Table 603.3.1
Minimum Air Gaps for Water Distribution

<table>
<thead>
<tr>
<th>Fixtures</th>
<th>Where Not Affected by Sidewalls 1 (inches)</th>
<th>Where Affected by Sidewalls 2 (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective openings 3 not greater than ½ of an inch in diameter</td>
<td>1</td>
<td>1½</td>
</tr>
<tr>
<td>Effective openings 3 not greater than ¾ of an inch in diameter</td>
<td>1½</td>
<td>2¼</td>
</tr>
<tr>
<td>Effective openings 2 not greater than 1 inch in diameter</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Effective openings 3 greater than 1 inch in diameter</td>
<td>Two times the diameter of effective opening</td>
<td>Three times the diameter of effective opening</td>
</tr>
</tbody>
</table>

For SI units: 1 inch = 25.4 mm

Notes:

1. Sidewalls, ribs, or similar obstructions do not affect air gaps where spaced from the inside edge of the spout opening a distance exceeding three times the diameter of the effective opening for a single wall, or a distance exceeding four times the effective opening for two intersecting walls.

2. Vertical walls, ribs, or similar obstructions extending from the water surface to above the horizontal plane of the spout opening other than specified in Footnote 1 above. The effect of three or more such vertical walls or ribs has not been determined. In such cases, the air gap shall be measured from the top of the wall.

3. The effective opening shall be the minimum cross-sectional area at the seat of the control valve or the supply pipe or tubing that feeds the device or outlet. Where two or more lines supply one outlet, the effective opening shall be the sum of the cross-sectional areas of the individual supply lines or the area of the single outlet, whichever is smaller.

4. Air gaps less than 1 inch (25.4 mm) shall be approved as a permanent part of a listed assembly that has been tested under actual backflow conditions with vacuums of 0 to 25 inches of mercury (85 kPa).

603.3.9 Reduced Pressure Detector Fire Protection Backflow Prevention Assembly. A reduced-pressure principle backflow prevention assembly with a parallel detector assembly consisting of a water meter and a reduced-pressure principle backflow prevention assembly (RP).

603.4 General Requirements. Assemblies shall comply with listed standards and be acceptable to the Authority Having Jurisdiction, with jurisdiction over the selection and installation of backflow prevention assemblies.

603.4.1 Backflow Prevention Valve. Where more than one backflow prevention valve is installed on a single premise, and the valves are installed in one location, each separate valve shall be permanently identified by the permittee in a manner satisfactory to the Authority Having Jurisdiction.

603.4.2 Testing. The premise owner or responsible person shall have the backflow prevention assembly tested by a certified backflow assembly tester at the time of installation, repair, or relocation and not less than on an annual schedule thereafter, or more often where required by the Authority Having Jurisdiction. The periodic testing shall be performed in accordance with the procedures referenced in ASSE Series 5000 by a tester qualified in accordance with those standards.

603.4.3 Access and Clearance. Access and clearance shall be provided for the required testing, maintenance, and repair. Access and clearance shall be in accordance with the manufacturer’s instructions, and not less than 12 inches (305 mm) between the lowest portion of the assembly and grade, floor, or platform. Installations elevated that exceed 5 feet (1524 mm) above the floor or grade shall be provided with a permanent platform capable of supporting a tester or maintenance person.

603.4.4 Connections. Direct connections between potable water piping and sewer-connected wastes shall not be permitted to exist under any condition with or without backflow protection. Where potable water is discharged to the drainage system, it shall be by means of an approved air gap of two pipe diameters of the supply inlet, but in no case shall the gap be less than 1 inch (25.4 mm). Connection shall be permitted to be made to the inlet side of a trap provided that an approved vacuum breaker is installed not less than 6 inches (152 mm), or the distance according to the device’s listing, above the flood-level rim of such trapped fixture, so that at no time will such device be subjected to backpressure.

603.4.5 Hot Water Backflow Preventers. Backflow preventers for hot water exceeding 110°F (43°C) shall be a type designed to operate at temperatures exceeding 110°F (43°C) without rendering a portion of the assembly inoperative.

603.4.6 Integral Backflow Preventers. Fixtures, appliances, or appurtenances with integral backflow preventers or integral air gaps manufactured as a unit shall be installed in accordance with their listing requirements and the manufacturer’s installation instructions.

603.4.7 Freeze Protection. In cold climate areas, backflow assemblies and devices shall be protected from freezing with an outdoor enclosure in accordance with ASSE 1060 or by a method acceptable to the Authority Having Jurisdiction.
603.4.8 Drain Lines. Drain lines serving backflow devices or assemblies shall be sized in accordance with the discharge rates of the manufacturer’s flow charts of such devices or assemblies.

603.4.9 Prohibited Locations. Backflow prevention devices with atmospheric vents or ports shall not be installed in pits, underground, or submerged locations. Backflow preventers shall not be located in an area containing fumes that are toxic, poisonous, or corrosive.

603.5 Specific Requirements. Specific requirements for backflow prevention shall comply with Section 603.5.1 through Section 603.5.20.

603.5.1 Atmospheric Vacuum Breaker. Water closet and urinal flushometer valves shall be protected against backflow by an approved backflow prevention assembly, device, or method. Where the valves are equipped with an atmospheric vacuum breaker, the vacuum breaker shall be installed on the discharge side of the flushometer valve with the critical level not less than 6 inches (152 mm), or the distance according to its listing, above the overflow rim of a water closet bowl or the highest part of a urinal.

603.5.2 Ballcock. Water closet and urinal tanks shall be equipped with a ballcock. The ballcock shall be installed with the critical level not less than 1 inch (25.4 mm) above the full opening of the overflow pipe. In cases where the ballcock has no hush tube, the bottom of the water supply inlet shall be installed 1 inch (25.4 mm) above the full opening of the overflow pipe.

603.5.3 Backflow Prevention. Water closet flushometer tanks shall be protected against backflow by an approved backflow prevention assembly, device, or method.

603.5.4 Heat Exchangers. Heat exchangers used for heat transfer, heat recovery, or solar heating shall protect the potable water system from being contaminated by the heat-transfer medium. Single-wall heat exchangers used in indirect-fired water heaters shall meet the requirements of Section 505.4.1. Double-wall heat exchangers shall separate the potable water from the heat-transfer medium by providing a space between the two walls that are vented to the atmosphere.

603.5.5 Water Supply Inlets. Water supply inlets to tanks, vats, sumps, swimming pools, and other receptors shall be protected by one of the following means:

1. An approved air gap.
2. A listed vacuum breaker installed on the discharge side of the last valve with the critical level not less than 6 inches (152 mm) or in accordance with its listing.
3. A backflow preventer suitable for the degree of hazard, installed in accordance with the requirements for that type of device or assembly as set forth in this chapter.

603.5.6 Protection from Lawn Sprinklers and Irrigation Systems. Potable water supplies to systems having no pumps or connections for pumping equipment, and no chemical injection or provisions for chemical injection, shall be protected from backflow by one of the following devices:

1. Atmospheric vacuum breaker (AVB)
2. Pressure vacuum breaker backflow prevention assembly (PVB)
3. Spill-resistant pressure vacuum breaker (SVB)
4. Reduced-pressure principle backflow prevention assembly (RP)

603.5.6.1 Systems with Pumps. Where sprinkler and irrigation systems have pumps, connections for pumping equipment, or auxiliary air tanks, or are otherwise capable of creating backpressure, the potable water supply shall be protected by the following type of device where the backflow device is located upstream from the source of backpressure:

1. Reduced-pressure principle backflow prevention assembly (RP)

603.5.6.2 Systems with Backflow Devices. Where systems have a backflow device installed downstream from a potable water supply pump or a potable water supply pump connection, the device shall be one of the following:

1. Atmospheric vacuum breaker (AVB)
2. Pressure vacuum breaker backflow prevention assembly (PVB)
3. Spill-resistant pressure vacuum breaker (SVB)
4. Reduced-pressure principle backflow prevention assembly (RP)

603.5.6.3 Systems with Chemical Injectors. Where systems include a chemical injector or provisions for chemical injection, the potable water supply shall be protected by a reduced-pressure principle backflow prevention assembly (RP).

603.5.7 Outlets with Hose Attachments. Potable water outlets with hose attachments, other than water heater drains, boiler drains, freeze resistant yard hydrants and clothes washer connections, shall be protected by a nonremovable hose bibb-type backflow preventer, a nonremovable hose bibb-type vacuum breaker, or by an atmospheric vacuum breaker installed not less than 6 inches (152 mm) above the highest point of usage located on the discharge side of the last valve. In climates where freezing temperatures occur, a listed self-draining frost-proof hose bibb with an integral backflow preventer or vacuum breaker shall be used.

603.5.8 Water-Cooled Equipment. Water-cooled compressors, degreasers, or other water-cooled equipment shall be protected by a backflow preventer installed in accordance with the requirements of this chapter. Water-cooled equipment that produces backpressure shall be equipped with the appropriate protection.

603.5.9 Aspirators. Water inlets to water-supplied aspirators shall be equipped with a vacuum breaker installed in accordance with its listing requirements and this chapter. The discharge shall drain through an air gap. Where the tailpiece of a fixture to receive the discharge of an aspirator is used, the air gap shall be located above the flood-level rim of the fixture.
603.5.10 Steam or Hot Water Boilers. Potable water connections to steam or hot water boilers shall be protected from backflow by a double check valve backflow prevention assembly or reduced pressure principle backflow prevention assembly in accordance with Table 603.2. Where chemicals are introduced into the system a reduced pressure principle backflow prevention assembly shall be provided in accordance with Table 603.2.

603.5.11 Nonpotable Water Piping. In cases where it is impractical to correct individual cross-connections on the domestic waterline, the line supplying such outlets shall be considered a nonpotable water line. No drinking or domestic water outlets shall be connected to the nonpotable waterline. Where possible, portions of the nonpotable waterline shall be exposed, and exposed portions shall be properly identified in a manner satisfactory to the Authority Having Jurisdiction. Each outlet on the nonpotable waterline that is permitted to be used for drinking or domestic purposes shall be posted: “CAUTION: NONPOTABLE WATER, DO NOT DRINK.”

603.5.12 Beverage Dispensers. Potable water supply to beverage dispensers, carbonated beverage dispensers, or coffee machines shall be protected by an air gap or a Reduced Pressure Principle Backflow Prevention Assembly in accordance with ASSE 1013. For carbonated beverage dispensers, piping material installed downstream of the backflow preventer shall not be affected by carbon dioxide gas.

603.5.13 Deck-Mounted and Equipment-Mounted Vacuum Breakers. Deck-mounted or equipment-mounted vacuum breakers shall be installed in accordance with their listing and the manufacturer’s installation instructions, with the critical level not less than 1 inch (25.4 mm) above the flood-level rim.

603.5.14 Protection from Fire Systems. Except as provided under Section 603.5.14.1 and Section 603.5.14.2, potable water supplies to fire protection systems that are normally under pressure, including but not limited to standpipes and automatic sprinkler systems, except in one- or two-family or townhouse residential sprinkler systems, piped in materials approved for potable water distribution systems shall be protected from backpressure and backsiphonage by one of the following testable devices:

(1) Double check valve backflow prevention assembly (DC)
(2) Double check detector fire protection backflow prevention assembly
(3) Reduced pressure principle backflow prevention assembly (RP)
(4) Reduced pressure detector fire protection backflow prevention assembly

Potable water supplies to fire protection systems that are not normally under pressure shall be protected from backflow and shall be in accordance with the requirements of the appropriate standards referenced in Table 1701.1.

603.5.14.1 Fire Department Connection. Where fire protection systems supplied from a potable water system include a fire department (siamese) connection that is located less than 1700 feet (518.2 m) from a nonpotable water source that is capable of being used by the fire department as a secondary water supply, the potable water supply shall be protected by one of the following:

(1) Reduced pressure principle backflow prevention assembly (RP)
(2) Reduced pressure detector fire protection backflow prevention assembly

Nonpotable water sources include fire department vehicles carrying water of questionable quality or water that is treated with antifreeze, corrosion inhibitors, or extinguishing agents.

603.5.14.2 Chemicals. Where antifreeze, corrosion inhibitors, or other chemicals are added to a fire protection system supplied from a potable water supply, the potable water system shall be protected by one of the following:

(1) Reduced pressure principle backflow prevention assembly (RP)
(2) Reduced pressure detector fire protection backflow prevention assembly

603.5.14.3 Hydraulic Design. Where a backflow device is installed in the potable water supply to a fire protection system, the hydraulic design of the system shall account for the pressure drop through the backflow device. Where such devices are retrofitted for an existing fire protection system, the hydraulics of the sprinkler system design shall be checked to verify that there will be sufficient water pressure available for satisfactory operation of the fire sprinklers.

603.5.15 Health Care or Laboratory Areas. Vacuum breakers for washer-hose bedpans shall be located not less than 5 feet (1524 mm) above the floor. Hose connections in health care or laboratory areas shall be not less than 6 feet (1829 mm) above the floor.

603.5.16 Special Equipment. Portable cleaning equipment, dental vacuum pumps, and chemical dispensers shall be protected from backflow by an air gap, an atmospheric vacuum breaker, a spill-resistant vacuum breaker, or a reduced pressure principle backflow preventer.

603.5.17 Potable Water Outlets and Valves. Potable water outlets, freeze proof yard hydrants, combination stop and waste valves, or other fixtures that incorporate a stop and waste feature that drains into the ground shall not be installed underground.

603.5.18 Pure Water Process Systems. The water supply to a pure water process system, such as dialysis water systems, semiconductor washing systems, and similar process piping systems, shall be protected from backpressure and backsiphonage by a reduced-pressure principle backflow preventer.

603.5.18.1 Dialysis Water Systems. The individual connections of the dialysis related equipment...
604.0 Materials.

604.1 Pipe, Tube, and Fittings. Pipe, tube, fittings, solvent cements, thread sealants, solder, and flux used in potable water systems intended to supply drinking water shall be in accordance with the requirements of NSF 61. Where fittings and valves are made from copper alloys containing more than 15 percent zinc by weight, and are used in plastic piping systems, they shall be resistant to dezincification and stress corrosion cracking in accordance with NSF 14.

Materials used in the water supply system, except valves and similar devices, shall be of a like material, except where otherwise approved by the Authority Having Jurisdiction.

Materials for building water piping and building supply piping shall comply with the applicable standards referenced in Table 604.1.

604.2 Lead Content. The maximum allowable lead content in pipes, pipe fittings, plumbing fittings, and fixtures intended to convey or dispense water for human consumption shall be not more than a weighted average of 0.25 percent with respect to the wetted surfaces of pipes, pipe fittings, plumbing fittings, and fixtures. For solder and flux, the lead content shall be not more than 0.2 percent where used in piping systems that convey or dispense water for human consumption.

Exceptions:

(1) Pipes, pipe fittings, plumbing fittings, fixtures, or backflow preventers used for nonpotable services such as manufacturing, industrial processing, irrigation, outdoor watering, or any other uses where the water is not used for human consumption.

(2) Flush valves, fill valves, flushometer valves, tub fillers, shower valves, service saddle valves, or water distribution main gate valves that are 2 inches (50 mm) in diameter or larger.

604.4 Hard-Drawn Copper or Copper Alloy Tubing. Hard-drawn copper or copper alloy tubing for water supply and distribution in addition to the required incised marking, shall be marked in accordance with ASTM B88. The colors shall be: Type K, green; Type L, blue; and Type M, red.

604.5 Flexible Connectors. Flexible water connectors shall be installed in readily accessible locations, and where under continuous pressure shall be in accordance with ASME A112.18.6/CSA B125.6.

604.6 Cast-Iron Fittings. Cast-iron fittings up to and including 2 inches (50 mm) in size, where used in connection with potable water piping, shall be galvanized.

604.7 Malleable Iron Fittings. Malleable iron water fittings shall be galvanized.

604.8 Previously Used Piping and Tubing. Piping and tubing that has previously been used for a purpose other than for potable water systems shall not be used.

604.9 Epoxy Coating. Epoxy coating used on existing, underground steel building supply piping shall be in accordance with NSF 61 and AWWA C210.

604.10 Plastic Materials. Approved plastic materials shall be permitted to be used in building supply piping, provided that where metal building supply piping is used for electrical grounding purposes, replacement piping therefore shall be of like materials.

Exception: Where a grounding system acceptable to the Authority Having Jurisdiction is installed, inspected, and approved, metallic pipe shall be permitted to be replaced with nonmetallic pipe.

604.10.1 Tracer Wire. Plastic materials for building supply piping outside underground shall have a blue insulated copper tracer wire or other approved conductor installed adjacent to the piping. Access shall be provided to the tracer wire or the tracer wire shall terminate above-ground at each end of the nonmetallic piping. The tracer wire size shall be not less than 18 AWG and the insulation type shall be suitable for direct burial.

Exception: Where the electrical wiring for the pump is installed in the same trench as the water line, from the point of origin to the structure, a tracer wire shall not be required.

604.11 Solder. Solder shall comply with the requirements of Section 604.2.